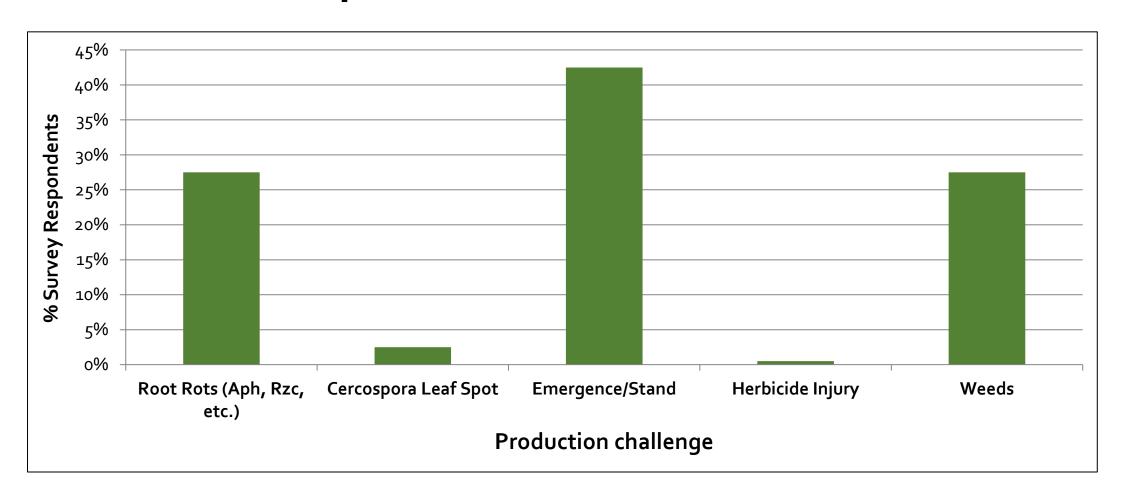
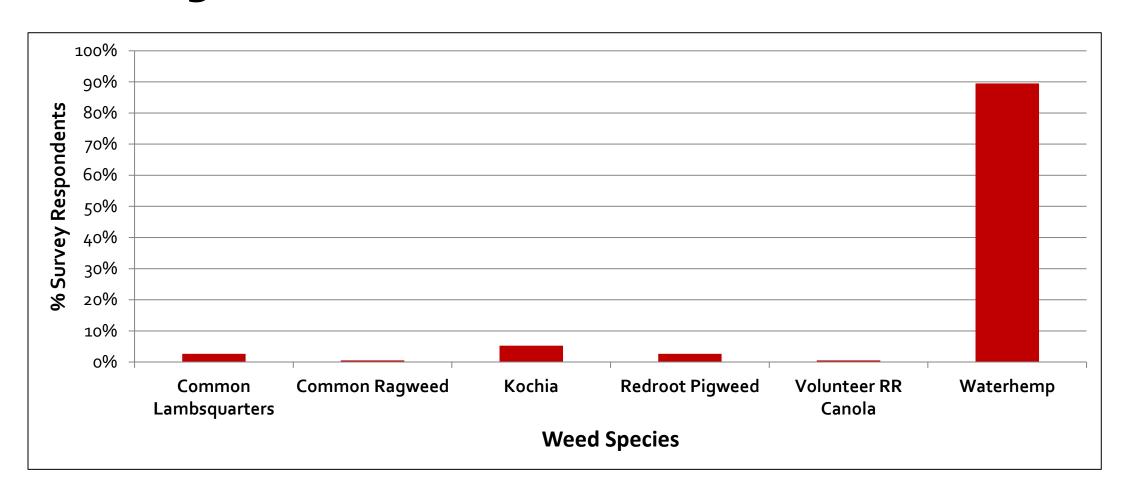
# Weed Control in Sugarbeet


Thomas Peters, Alexa Lystad, and Adam Aberle

North Dakota State University and University of Minnesota





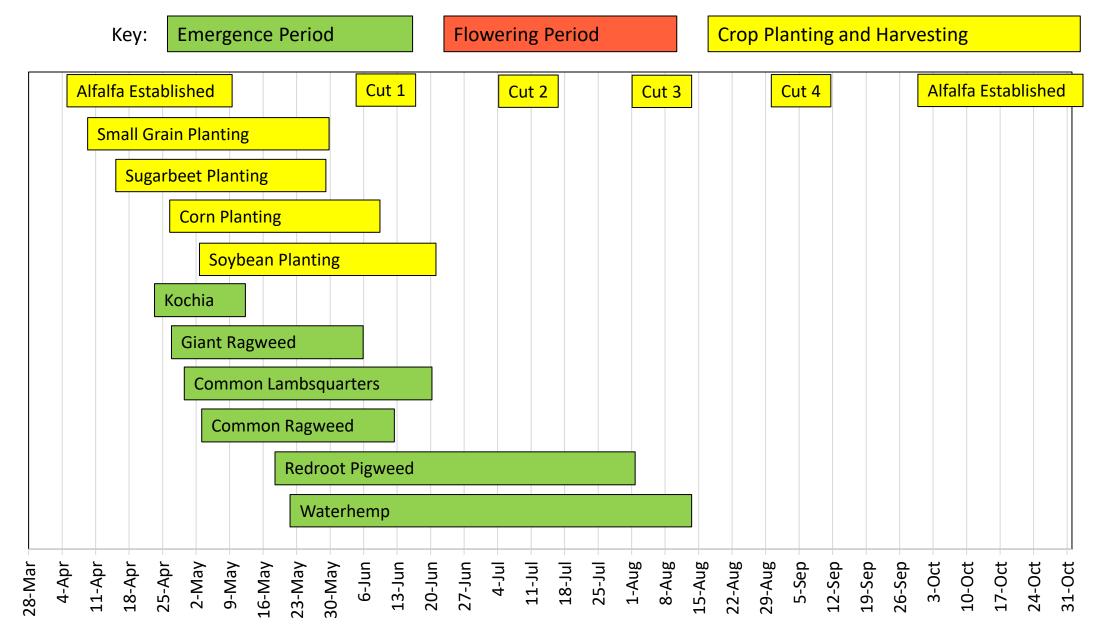

# What was your most important production problem in 2022? (Multiple Choice)



<sup>&</sup>lt;sup>a</sup>Grand Forks Growers Seminar, February 16, 2023

# What was your most troublesome weed control challenge in 2022?




### Outline

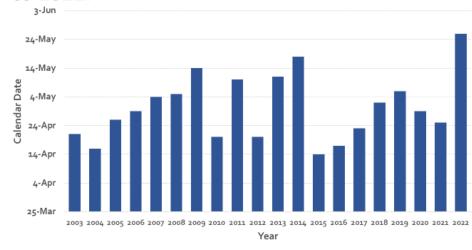
- Waterhemp control in sugarbeet
- Stinger HL for ragweed control
- Complex mixtures
- Spin-Aid for kochia control







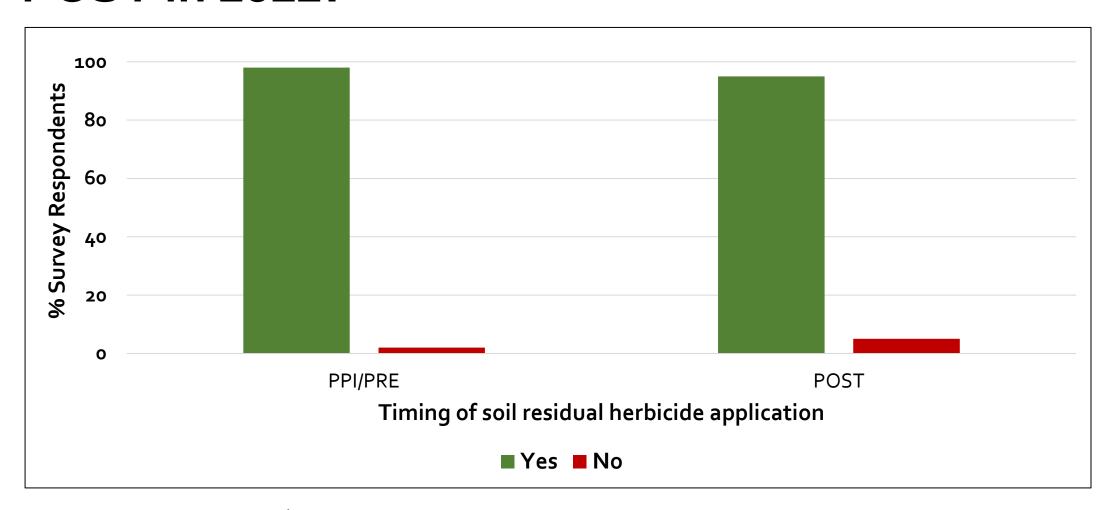



### Waterhemp control by the numbers

- When will waterhemp emerge? May 10
  - Date hasn't change much across years
- When will I plant sugarbeet?

dissertation. Fargo, ND: North Dakota State University. 74 p

- April 14 to May 26, Minn-Dak, 2000-2022
- Time interval between first and second layby?
  - 13 to 17 daysa


Average sugarbeet plant date, MDFC, 2003 to 2022.





<sup>a</sup>Holen CA (1998) Effect of environment on sugarbeet injury from desmedipham and a growing degree equation for predicting sugarbeet leaf stages. Ph.D

# Did you use a soil residual herbicide PPI/PRE or POST in 2022?



<sup>&</sup>lt;sup>a</sup>Grand Forks Growers Seminar, February 7, 2023

### Waterhemp Control Program in Sugarbeet

| Planting Date      | Recommendation                                         |  |  |  |
|--------------------|--------------------------------------------------------|--|--|--|
|                    | Dual Magnum at 0.5 to 1.0 pt/A, ethofumesate at 3 to   |  |  |  |
|                    | 7.5 pt/A or Dual Magnum at 0.5 to 0.75 pt/A plus       |  |  |  |
| Sugarbeet plant in | ethofumesate at 2 to 3 pt/A                            |  |  |  |
| April or May       | Split lay-by application (early postemergence /        |  |  |  |
|                    | postemergence). Chloroacetamide herbicides applied     |  |  |  |
|                    | at 2-If sugarbeet fb 6- to 8-If sugarbeet              |  |  |  |
| June               | Continue to scout fields for waterhemp. Control        |  |  |  |
|                    | escapes with Ultra Blazer (Section 18ee), Liberty with |  |  |  |
|                    | the Redball™ 915 hooded sprayer (24c), or inter-row    |  |  |  |
|                    | cultivation                                            |  |  |  |
| July               | Electric Discharge Systems (WeedZapper™)               |  |  |  |
| August / September | Hand remove waterhemp                                  |  |  |  |

### Ethofumesate in 2024 Group 15

Ethofumesate products for sugarbeet production

- Nortron, Bayer CropScience
- Ethotron, UPL NA Inc.
- Ethofumesate 4SC, Farm Business Network
- Nektron, Atticus, AG
- Maxtron 4SC (3.78 lb/G), ALBAUGH, LLC

### Ethofumesate in 2024 Group 15

Ethofumesate products for sugarbeet production

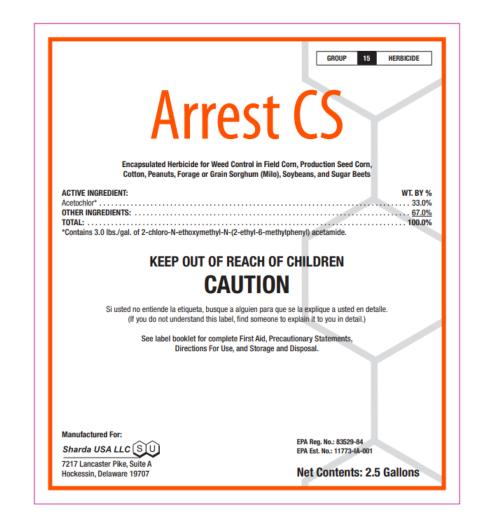
- Nortron, Bayer CropScience
- Ethotron, UPL NA Inc.
- Ethofumesate 4SC, Farm Business Network
- Nektron, Atticus, AG
- Maxtron 4SC (3.78 lb/G), ALBAUGH, LLC

# Chloroacetamides in 2024 Group 15

#### Dimethenamid

Outlook, BASF

#### Acetochlor (encapsulated)


- Warrant, Bayer CropScience
- Enversa, Corteva agriscience
- Arrest CS, Sharda USA LLC

#### S-metolachlor

- Dual Magnum, Syngenta Crop Protection, LLC
- EverpreX, Corteva agriscience
- Medal, Syngenta Crop Protection, LLC
- Brawl, TENKOZ, Inc.
- Moccasin, UPL NA Inc.
- Charger Basic, WinField United

#### **Arrest CS**

- Warrant is encapsulated acetochlor. I believe encapsulation offers safety with sugarbeet
- Arrest CS is also an encapsulated formulation
- Warrant is labeled for application POST in sugarbeet
- Arrest CS has labeled applications
   of pre-plant, at-planting, preemergence,
   and POST applications in sugarbeet
- DON'T apply this product before, at, or immediately after planting



# How long do soil residual herbicides last?

| Product                  | Application in sugarbeet | ND Weed<br>Control <sup>b</sup> | TJP /<br>Label |
|--------------------------|--------------------------|---------------------------------|----------------|
|                          |                          | Num of W                        | 'eeks          |
| Ethofumesate<br>5-7.5 pt | PPI/PRE                  | 6 to 12                         | 4-8            |
| Ethofumesate<br>2-3 pt   | PRE                      | -                               | 3              |
| Dual Magnum              | PRE                      | 0-2/2-6                         | 2              |

| Product       | Application in sugarbeet <sup>a</sup> | ND Weed<br>Control <sup>b</sup> | TJP /<br>Label |
|---------------|---------------------------------------|---------------------------------|----------------|
|               |                                       | Num of W                        | 'eeks          |
| Outlook       | POST                                  | 0-2/2-6                         | 2              |
| S-metolachlor | POST                                  | 0-2/2-6                         | 3              |
| Warrant       | POST                                  | 0-2/2-6                         | 4              |

| Residual weed activity <sup>b</sup> | Num of Weeds    |
|-------------------------------------|-----------------|
| Short                               | o to 2          |
| Medium                              | 2 to 6          |
| Long                                | 6 to 12         |
| Very Long                           | Greater than 12 |

<sup>a</sup>POST to sugarbeet; PRE to waterhemp

# Best Management Practices for Stinger HL application and ragweed control

- Stinger HL at 1.8 fl oz/A must be our lowest rate; 2.4 fl oz is preferred.
- Stinger HL at 1.8 fl oz/A fb Stinger HL at 1.8 fl oz/A for repeat applications, especially on ragweed greater than 2-inch.
- Time Stinger HL application to ragweed size rather than sugarbeet stage.
- May need to separate glyphosate and Stinger HL application if your want to delay termination nurse crop to 4-lf sugarbeet.



# Stinger HL 'Higher Load' is approved for corn, cereals, canola, and sugarbeet in MN and ND.

| Product    | Loading  | Labeled rate      | Sugarbeet rate    |
|------------|----------|-------------------|-------------------|
| Stinger    | 3 lb/gal | 4-10.7 fl oz/A    | 2 – 6 fl oz/A     |
| Stinger HL | 5 lb/gal | 2.4 – 6.4 fl oz/A | 1.8 – 3.6 fl oz/A |

|            | Cc nverting Stinger rate to Stinger HL rate |         |         |         |  |
|------------|---------------------------------------------|---------|---------|---------|--|
|            | fl oz/A                                     | fl oz/A | fl oz/A | fl oz/A |  |
| Stinger    | 2                                           | 3       | 4       | 6       |  |
| Stinger HL | 1.2                                         | 1.8     | 2.4     | 3.6     |  |
|            |                                             |         |         |         |  |

### Common ragweed control, Ada, MN, 2022 Ragweed less than 2-inch

|                                                             |                     | Common<br>con     | ragweed<br>trol    |
|-------------------------------------------------------------|---------------------|-------------------|--------------------|
| Treatment                                                   | Rate                | July 8<br>16 DAAC | July 26<br>34 DAAC |
|                                                             | fl oz/A             | %                 | %                  |
| Stinger HL + PowerMax3                                      | 1.2 + 25            | 75 b              | 6o cd              |
| Stinger HL + PowerMax <sub>3</sub>                          | 1.8 + 25            | 91 a              | 80 b               |
| Stinger HL + PowerMax <sub>3</sub>                          | 2.4 + 25            | 91 a              | 88 a               |
| Stinger HL + PM <sub>3</sub> / Stinger HL + PM <sub>3</sub> | 1.5 + 25 / 1.5 + 25 | 91 a              | 89 a               |
| Stinger HL + PM <sub>3</sub> / Stinger HL + PM <sub>3</sub> | 1.8 + 25 / 1.8 + 25 | 95 a              | 94 a               |
| LSD (0.05)                                                  |                     | 6                 | 6                  |

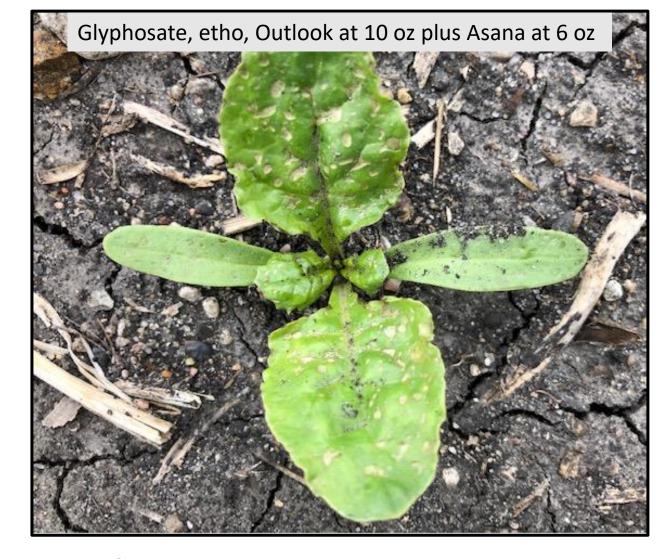
### Common ragweed control, Ada, MN, 2022 Ragweed 2- to 4-inch

|                                                             |                     | Common<br>con     | ragweed<br>trol    |
|-------------------------------------------------------------|---------------------|-------------------|--------------------|
| Treatment                                                   | Rate                | July 8<br>11 DAAD | July 26<br>29 DAAD |
|                                                             | fl oz/A             | %                 | %                  |
| Stinger HL + PowerMax3                                      | 1.2 + 25            | 65 c              | 54 d               |
| Stinger HL + PowerMax3                                      | 1.8 + 25            | 68 c              | 63 c               |
| Stinger HL + PowerMax3                                      | 2.4 + 25            | 71 bc             | 65 c               |
| Stinger HL + PM <sub>3</sub> / Stinger HL + PM <sub>3</sub> | 1.5 + 25 / 1.5 + 25 | 69 c              | 77 b               |
| Stinger HL + PM <sub>3</sub> / Stinger HL + PM <sub>3</sub> | 1.8 + 25 / 1.8 + 25 | 70 bc             | 79 b               |
| LSD (0.05)                                                  |                     | 6                 | 6                  |

# Sugarbeet injury, Ada, MN, 2022

|                        |          |                   |           | Growth F          | Reduction          |
|------------------------|----------|-------------------|-----------|-------------------|--------------------|
| Treatment              | Rate     | Common<br>Ragweed | Sugarbeet | June 30<br>8 DAAC | July 16<br>24 DAAC |
|                        | fl oz/A  | inch              | lvs       | %                 | %                  |
| Stinger HL + PowerMax3 | 1.2 + 25 | <2                | 2         | o d               | 0                  |
| Stinger HL + PowerMax3 | 1.8 + 25 | <2                | 2         | o d               | 0                  |
| Stinger HL + PowerMax3 | 2.4 + 25 | <2                | 2         | o d               | 0                  |
| Stinger HL + PowerMax3 | 1.2 + 25 | 2-4               | 2-4       | 6 bcd             | 0                  |
| Stinger HL + PowerMax3 | 1.8 + 25 | 2-4               | 2-4       | 8 bc              | 0                  |
| Stinger HL + PowerMax3 | 2.4 + 25 | 2-4               | 2-4       | 11 ab             | 3                  |
| LSD (0.05)             |          |                   |           | 7                 | NS                 |

### Other thoughts about Stinger HL


- 10.5 months **Rotation Interval** with soils greater than 2% organic matter AND rainfall more than 15 inches during 12 months following application
- 6-inch of rain in June, July and August
- Climate information is especially if Stinger HL rate is greater than 3.6 fl oz/A in a season
- Manage clopyralid products in the sequence with sugarbeet

| Spring Wheat | Sugarbeet  | Corn                         |
|--------------|------------|------------------------------|
| WideMatch    | Stinger HL | SureStart/II / TripleFlex/II |
| WideARmatch  |            | Resicore / Resicore XL       |
| Curtail      |            | Maverick                     |
| PerfectMatch |            | Kyro                         |

# Why do you make pesticide mixtures?

- Improve weed control
- Broaden spectrum of control
- Save trips







- EC formulations (Outlook and S-metolachlor) speckle sugarbeet
- Asana may be "synergizing" the speckled phenotype
- Speckle is related to a surfactant system "spreading" the droplet

# Sugarbeet degrades herbicides by metabolizing herbicides

Challenging environmental conditions slow metabolism

- Cool temperatures
- Excessive moisture conditions
- Overcast days

Multiple herbicides means sugarbeet has to detoxify several active ingredients under stress conditions...at the same time



Etho + Dual Magnum (PRE) at 2 + 0.5 pt/A followed by RUPM3 + etho + S-metolachlor + Stinger HL (2-lf) at 25 + 6 + 16 + 1.5 fl oz/A fb RPM33 + etho + S-metolachlor + Stinger HL (6-lf) at 25 + 6 + 16 + 1.5 fl oz/A, Rothsay, MN, 2022.

#### Sugarbeet injury, greenhouse, March 2023

| Treatment                                      | Rate         | GR, 10<br>DAT | GR, 14<br>DAT | GR, 17<br>DAT |
|------------------------------------------------|--------------|---------------|---------------|---------------|
|                                                | fl oz /A     |               | %             |               |
| RUPM3 + ethofumesate (base)                    | 30 + 12      | 10 C          | 4 C           | 3 c           |
| Base + Outlook                                 | 21           | 27 b          | 12 b          | 9 c           |
| Base + Outlook and Mustang Maxx                | 21 + 4       | 16 c          | 15 b          | 18 b          |
| Base + Outlook, Mustang Maxx and<br>Stinger HL | 21 + 4 + 3.6 | 37 a          | 37 a          | 43 a          |
| LSD (0.10)                                     |              | 10            | 9             | 10            |

- Injury from Mustang Maxx (or Asana) less than chlorpyrifos.
- Add adjuvant with RUPM, ethofumesate and Outlook. Leave it out with RUPM, ethofumesate, Outlook, insecticide and Stinger

### Run 2





## Soil-borne fungicides with herbicides

- Quadris can be mixed with Roundup Power Max and/or Stinger
- Oil based formulations or adjuvants mixed with Quadris may cause necrosis and chlorosis injury to sugarbeet
- What about Excalia?

Quadris mixed with oil-based herbicides may cause bronzing or bleaching damage. Image probably at overlap rate. Photo courtesy of Mike Metzger, Minn-Dak Farmers Coop.



# Sugarbeet injury in response to herbicide treatment, greenhouse, 2023

| Herbicide treatment                       |                | Necrosis | <b>Growth Reduction</b> |                  |
|-------------------------------------------|----------------|----------|-------------------------|------------------|
|                                           | Rate           | 4 DAT    | 4 DAT                   | 14 DAT           |
|                                           | fl oz/A        | %        | %                       | )                |
| Non-Treated Control                       | -              | ОС       | 3 c                     | 3 d              |
| RUPM3 + etho + Outlook (base)             | 28+ 6+ 16      | 8 b      | 16 b                    | <del>1</del> 3 C |
| Base + Excalia + Mustang Max + Stinger HL | 2 + 4 + 2.4    | ОС       | 19 b                    | 21 b             |
| Base + Quadris + Mustang Max + Stinger HL | 14.3 + 4 + 2.4 | 30 a     | 6o a                    | 43 a             |
|                                           |                |          |                         |                  |

- Can sugarbeet injury be explained by Excalia or Quadris formulation?
  - Excalia is a suspension concentrate formulation
  - Quadris is a flowable formulation

# Pesticide mixtures with Excalia or Quadris, greenhouse, 2023 Images collected on May 1,2023, 11 DAT



Excalia

Quadris

\*Base = Roundup PowerMAX3 + Nortron + Outlook with Destiny HC and Amsol Liquid AMS

# Sugarbeet injury in response to herbicide treatment, greenhouse, 2023

| Herbicide treatment           |            | Necrosis | Growth Reduction |        |
|-------------------------------|------------|----------|------------------|--------|
|                               | Rate       | 4 DAT    | 4 DAT            | 14 DAT |
|                               | fl oz/A    | %        | %                |        |
| Non-Treated Control           | -          | o b      | 3 p              | 3 p    |
| RUPM3 + etho + Outlook (base) | 25+ 12+ 21 | 0 a      | 16 a             | 13 a   |
| Ecalia and Mustang Max        | 2 + 4      | o b      | 10 ab            | o b    |
| Quadris and Mustang Max       | 14.3 + 4   | o b      | 11 ab            | 5 ab   |
|                               |            |          |                  |        |

# Mustang Max mixed with Excalia or Quadris, greenhouse, 2023 Images collected on May 1,2023, 11 DAT











# Kochia control in sugarbeet Three options

All options begin with ethofumesate, soil applied

- Paraquat before sugarbeet emerges
  - Use rate depending on vegetation; 1.3 to 2 pt/A (max rate is 2.7 pt/A).
  - Gramoxone alone or in tank mixtures are permitted by ground and by air; a minimum of 10 gal/A by ground and 5 gal/A for aerial application.
  - Use spray nozzles that will produce medium to coarse droplets are recommended.
  - Use an adjuvant, Nonionic-Surfactant (preferred) at 0.25% v/v (2 pt/100 gal). Crop Oil Concentrate or Methylated Seed Oil at 1.0% v/v (1 gal/100 gal).
  - 24 hr re-entry.



# Kochia control in sugarbeet Three options

All options begin with ethofumesate, soil applied

- Glyphosate sensitive kochia (fenceline kochia)
- Roundup PowerMax3 (full rates)
  mixed with a high quality adjuvant
  and ammonium sulfate
- Roundup PowerMax3 + ethoxylate tallowamine adjuvants + AMS



### Kochia control in sugarbeet Three options

All options begin with ethofumesate, soil applied

- Redevelopment of phenmedipham combines historical field and recent greenhouse and field experiments
- Spin-Aid, Betanal, 'Blue Can'
  - Kochia, common lambsquarters and common ragweed control
  - Spin-Aid + ethofumesate; Spin-Aid + ethofumesate + RUMP3
  - Small kochia



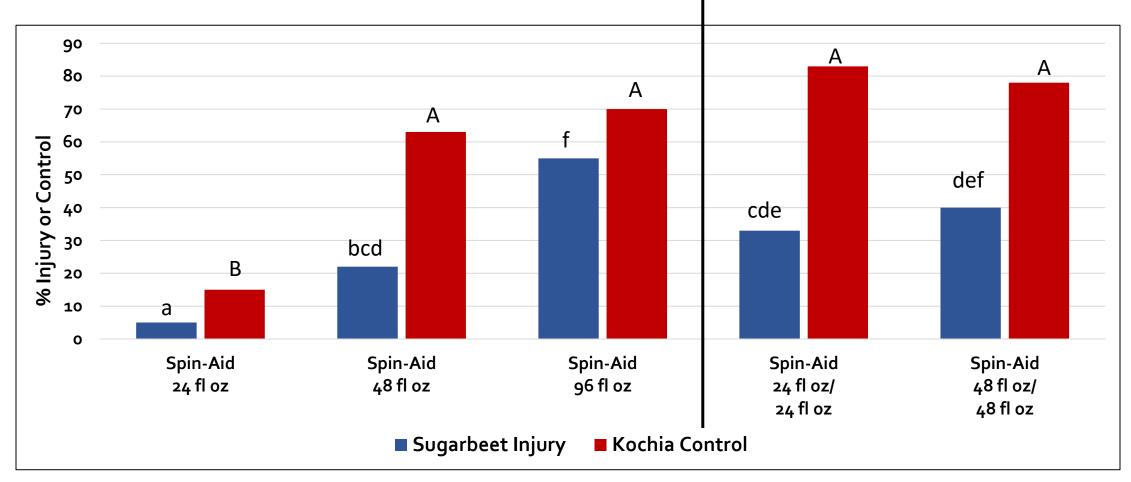








· Scout early next year


### What have we learned about Spin-Aid

- Sugarbeet rapidly metabolize Spin-Aid to less toxic compounds (Hendrick et al. 1974)
- Spin-Aid should be applied over small weeds; rate dependent on sugarbeet growth stage
- Environmental conditions influences PSII inhibitors efficacy
  - Weed control is less with cool temps and low light as compared with direct sunlight conditions (Abbaspoor and Streibig 2007)
  - Risk of injury increases at temperatures greater than 80F and sudden changes from a cool, cloudy environment to a hot, sunny environment (Betamix BMPs).





Injury or control from Spin-Aid, across locations, 2023. ab



<sup>&</sup>lt;sup>a</sup>Treatments included ethofumesate at 4 to 12 fl oz/A plus Noble (MSO) at 1.5 pt/A.

bMeans within a rating timing that do not share any letter are significantly different by the LSD at the 5% level of significance.

# Kochia control from Spin-Aid, 21 DAT, greenhouse, December/January 22023/24



### 2-inch LQ control in response to Spin-Aid applied Jan 29 and Feb 2, Greenhouse.a Spin-Aid + Spin-Aid + Spin-Aid + Control Etho, 2-times **Ethofumesate** Etho, 2-times 16+4, 24+4 16+4 fl oz/A 16+4, 32+4

# Control of 2-inch common lambsquarters with Spin-Aid, greenhouse, 2024

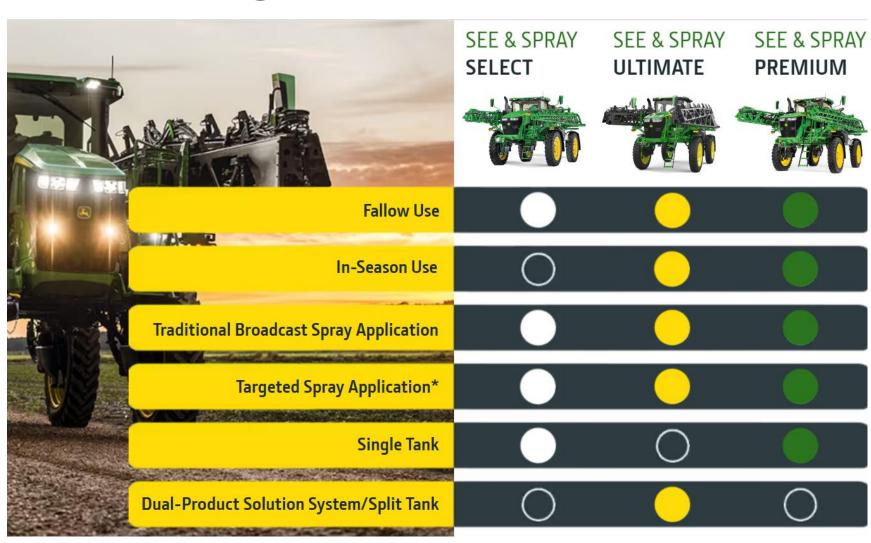
| Treatment <sup>a</sup>             | Rate            | Control,<br>4 DAAA | Control,<br>10 DAAA | Control,<br>14 DAAA |
|------------------------------------|-----------------|--------------------|---------------------|---------------------|
|                                    | fl oz/A         | %                  | %                   | %                   |
| Control                            |                 | o b                | 0 C                 | 0 C                 |
| Spin-Aid + etho                    | 16 + 4          | 48 a               | 82 b                | 79 b                |
| Spin-Aid + etho fb Spin-Aid + etho | 16+4/24+4       | 62 a               | 93 a                | 94 a                |
| Spin-Aid + etho fb Spin-Aid + etho | 16 + 4 / 32 + 4 | 68 a               | 96 a                | 95 a                |
| LSD (0.10)                         |                 | 21                 | 6                   | 7                   |

<sup>&</sup>lt;sup>a</sup>Noble Methylated Seed Oil, 1 pt/A, Winfield United

# Spin-Aid as part of an integrated kochia control program

- Spin-Aid rate is dependent on sugarbeet size
- Spin-Aid rate is dependent on if a soil residual herbicide was used
- Repeat Spin-aid applications on 5 day intervals for GR kochia control
- Roundup PowerMax3 mixed with Spin-Aid and etho on 10 day intervals
- Evaluating mixtures with Spin-Aid in the greenhouse
- Temperature at application and the following day will dictate rate

| Sugarbeet stage | Alone                   | Following soil residual herbicide |
|-----------------|-------------------------|-----------------------------------|
| (If stage)      | Spin-Aid + etho (fl oz) | Spin-Aid + etho (fl oz)           |
| Cotyledon       | 16 + 4                  | 12 + 4                            |
| 2               | 24 + 4                  | 16 + 4                            |
| 4               | 32 + 4                  | 24 + 4                            |
| 6               | 40 + 4                  | 32 + 4                            |


### **Future Research and Activity**

- Spin-Aid® alone and mixes with clopyralid for common ragweed control
- Tallowamine adjuvants with glyphosate for kochia control
- Update 24(c) local needs label, cotyledon to 6-lf sugarbeet, tank-mixes with group 4 and group 15 herbicides, adjuvants



# See & Spray™ technology

- Camera system recognizes 'plant' is different from sugarbeet
- Artificial intelligence vs. Machine Learning
- Al is computer software that mimics human cognition to perform complex tasks.
- ML is an application of AI that uses algorithms trained on data to perform a task
- I hear possible field evaluation in sugarbeet in 2024 and commercially available in sugarbeet in 2026
- What is our goal in sugarbeet?
- What herbicides make sense to use in sugarbeet?



### Thank you to our collaborators

- UMN Research and Outreach Center and NDSU Research and Extension Center
- David Mettler and SMBSC research team; Emma Burt and the Minn-Dak research team
- Our grower cooperators
  - ACSC: Lily Bergman, Black Bell Farms, David Braaten, Ryan Bushaw, Ryan Eggen, Michael Enright, Steve and Julie Helm, Scott Johnson Farms, Dave Kinney, Travis Knutson, Jeremy Morrison, Neil Rockstad
  - Minn-Dak Farmers Coop: Tony Hought, Matt Moxness, Vince Ulstad
  - Southern Minnesota Beet Sugar Coop: Steve and Nick Frank, Petersen Farms, Youngkrantz Family Farm

## Thank you for your continued support

#### Tom Peters

- Extension Sugarbeet Agronomist and Weed Control Specialist
- thomas.j.peters@ndsu.edu



BeetWeedControl @tompeters8131

- 701-231-8131 (office)
- 218-790-8131 (mobile)





University of Minnesota EXTENSIO